Lời giải :
`(1-{x+\sqrt{x}}/{\sqrt{x}+1})(1/{1-\sqrt{x}}+2/{\sqrt{x}-3})=-2`
`ĐK : x>=0;x ne 1;x ne 9`
`<=>(1-{\sqrt{x}(\sqrt{x}+1)}/{\sqrt{x}+1})({\sqrt{x}-3}/{(1-\sqrt{x})(\sqrt{x}-3)}+{2(1-\sqrt{x})}/{(1-\sqrt{x})(\sqrt{x}-3)})=-2`
`<=>(1-\sqrt{x})({\sqrt{x}-3+2-2\sqrt{x}}/{(1-\sqrt{x})(\sqrt{x}-3)})=-2`
`<=>(1-\sqrt{x})({-\sqrt{x}-1}/{(1-\sqrt{x})(\sqrt{x}-3)})=-2`
`<=>{-(\sqrt{x}+1)}/{\sqrt{x}-3}=-2`
`<=>{\sqrt{x}+1}/{\sqrt{x}-3}=2`
`<=>2(\sqrt{x}-3)=\sqrt{x}+1`
`<=>2\sqrt{x}-6=\sqrt{x}+1`
`<=>2\sqrt{x}-\sqrt{x}=6+1`
`<=>\sqrt{x}=7`
`<=>x=49(t//m)`
Vậy `x=49`