Đáp án:
Giải thích các bước giải:
`A=(2^12. 3^5-4^6. 81)/((2^2. 3)^6+8^4. 3^5`
`=>A=(2^12. 3^5- (2^2)^6. 3^4)/(2^12. 3^6+(2^3)^4. 3^5)`
`=>A=(2^12. 3^5- 2^12. 3^4)/(2^12. 3^6+2^12. 3^5)`
`=>A=(2^12.(3^5-3^4))/(2^12.(3^6+3^5))`
`=>A=(3^5-3^4)/(3^6+3^5)`
`=>A=(3^4.(3-1))/(3^4.(3^2+3))`
`=>A=(3-1)/(3^2+3)`
`=>A=1/6`
Vậy `A=1/6`.
`B=(30. 4^7. 3^29-5. 14^5. 2^12)/(54. 6^14. 9^7-12. 8^5. 7^5`
`=>B=(2.5.3.(2^2)^7. 3^29-5. 7^5. 2^5. 2^12)/(6.9. 6^14. 9^7-12. (2^3)^5. 7^5)`
`=>B=(5. 2^15. 3^30-5. 7^5. 2^17)/(6^15. 9^8-12. 2^15. 7^5)`
`=>B=(2^15.(5.3^30-5. 7^5. 2^2))/(2^15. 3^15. (3^2)^8-12. 2^15. 7^5)`
`=>B=(2^15.(5.3^30-5. 7^5. 2^2))/(2^15.(3^15. 3^16-12. 7^5))`
`=>B=(5. 3^30-5. 7^5. 2^2)/(3^15. 3^16-12. 7^5)`
`=>B=(5. 3^30-5. 7^5. 2^2)/(3^31-2^2.3. 7^5)`
`=>B=(5.(3^30-7^5. 2^2))/(3.(3^30-2^2. 7^5))`
`=>B=5/3`
Vậy `B=5/3`.