Đáp án:
`A=-1/2`
Giải thích các bước giải:
`A=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)-3^{32}/2`
`->2A=2(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)-3^{32}`
`=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)-3^{32}`
`=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)-3^{32}`
`=(3^{4}-1)(3^4+1)(3^8+1)(3^{16}+1)-3^{32}`
`=(3^{8}-1)(3^8+1)(3^{16}+1)-3^{32}`
`=(3^{16}-1)(3^{16}+1)-3^{32}`
`=3^{32}-1-3^{32}`
`=-1`
`->A=-1/2`
Vậy `A=-1/2`