$\\$
`a,`
`|x-1| - 2x=1/2`
`-> |x-1| = 1/2 + 2x` (1)
Điều kiện : `1/2 + 2x ≥ 0 -> 2x ≥ (-1)/2 -> x ≥ (-1)/4`
Khi đó (1) có dạng :
`-> |x-1| = |2x + 1/2|`
`->` \(\left[ \begin{array}{l}x-1=2x+\dfrac{1}{2}\\x-1=-2x-\dfrac{1}{2}\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}x-2x=1+\dfrac{1}{2}\\x+2x=1-\dfrac{1}{2}\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}-x=\dfrac{3}{2} \\3x=\dfrac{1}{2} \end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}x=\dfrac{-3}{2} \text{(Không thỏa mãn)}\\x=\dfrac{1}{6}\text{(Thỏa mãn)}\end{array} \right.\)
Vậy `x=1/6`
$\\$
`b,`
`3x - |x+15|=5/4`
`-> |x+15|=3x-5/4` (1)
Điều kiện : `3x-5/4 ≥ 0 -> 3x ≥ 5/4 -> x≥5/12`
Khi đó (1) có dạng :
`-> |x+15|=|3x-5/4|`
`->` \(\left[ \begin{array}{l}x+15=3x-\dfrac{5}{4}\\3x+15=-3x+\dfrac{5}{4}\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}x-3x=-15-\dfrac{5}{4}\\x+3x=-15+\dfrac{5}{4}\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}-2x=\dfrac{-65}{4}\\4x=\dfrac{-55}{4}\end{array} \right.\) $\\$ `->` \(\left[ \begin{array}{l}x=\dfrac{65}{8}\text{(Thỏa mãn)}\\x=\dfrac{-55}{16} \text{(Không thỏa mãn)}\end{array} \right.\)
Vậy `x=65/8`