Đáp án:
Giải thích các bước giải:
Đặt $2^{n}$ + 9 = x²
⇔ x² - $2^{n}$ = 9
⇔x² -($2^{\frac{n}{2}}$)²= 9.1
⇔(x+ $2^{\frac{n}{2}}$).(x-$2^{\frac{n}{2}}$)= 9.1
Th1: $\left \{ {{x+ 2^{\frac{n}{2}} =1} \atop {x-2^{\frac{n}{2}} =9}} \right.$
⇔ 2.$2^{\frac{n}{2}}$ =1-9=-8 ( vô lí do n ∈ N)
Th2: $\left \{ {{x+ 2^{\frac{n}{2}} =9} \atop {x-2^{\frac{n}{2}} =1}} \right.$
⇔ 2.$2^{\frac{n}{2}}$ =9-1=8
⇔ $2^{\frac{n}{2}}$ =4=2²
⇔$\frac{n}{2}$ =2 ⇔ n=4