Đáp án:
GTNN `A=27<=>x=225.`
Giải thích các bước giải:
`A=\sqrt{x}+144/(\sqrt{x}-3)(x>9)`
`A=(x-3\sqrt{x}+144)/(\sqrt{x}-3)`
Xét `A-27`
`A-27=(x-3\sqrt{x}+144-27\sqrt{x}+81)/(\sqrt{x}-3)`
`A-27=(x-30\sqrt{x}+225)/(\sqrt{x}-3)`
`A-27=(x-2.\sqrt{x}.15+15^2)/(\sqrt{x}-3)`
`A-27=(\sqrt{x}-15)^2/(\sqrt{x}-3)`
Vì `x>9=>\sqrt{x}-3>0`
`=>A-27>=0`
`=>A>=27`
Dấu "=" xảy ra khi `\sqrt{x}=15<=>x=225`
Vậy GTNN `A=27<=>x=225.`