Đáp án:
`a, (x^2 - 9) - (x + 2)(x + 3) = 0`
`⇔ (x^2 - 3^2) - (x + 2)(x + 3) = 0`
`⇔ (x - 3)(x + 3) - (x + 2)(x + 3) = 0`
`⇔ (x + 3)(x - 3 - x - 2) = 0`
`⇔ (x + 3). (-5) = 0`
`⇔ x + 3 = 0`
`⇒ x =0 - 3`
`⇒ x = -3`
Vậy `x = -3`
`b, (2x - 7)^2 = (2x - 7)`
`⇔ (2x - 7)^2 - (2x - 7) = 0`
`⇔ (2x - 7)(2x - 7 - 1) = 0`
`⇔ (2x - 7)(2x - 8) = 0`
`⇔ (2x - 7)(x - 4).2 = 0`
`⇒` $\left[\begin{matrix} 2x - 7 = 0\\ x - 4 = 0\end{matrix}\right.$
`⇒` $\left[\begin{matrix} 2x = 7\\ x = 4\end{matrix}\right.$
`⇒` $\left[\begin{matrix} x = \frac{7}{2}\\ x = 4\end{matrix}\right.$
Vậy `x = 7/2` hoặc `x = 4`
`c, 3x^3 - 7x = 0`
`⇔ x(3x^2 - 7) = 0`
`⇒` $\left[\begin{matrix} x = 0\\ 3x^2 - 7 = 0\end{matrix}\right.$
`⇒` $\left[\begin{matrix} x = 0\\ 3x^2 = 7\end{matrix}\right.$
`⇒` $\left[\begin{matrix} x = 0\\ x^2 = \dfrac{7}{3}\end{matrix}\right.$
`⇒` $\left[\begin{matrix} x = 0\\ x^2 = (\sqrt{\dfrac{7}{3}})^2\\x^2 = (-\sqrt{\dfrac{7}{3}})^2\end{matrix}\right.$
`⇒` $\left[\begin{matrix} x = 0\\ x = \sqrt{\dfrac{7}{3}}\\x^2 = -\sqrt{\dfrac{7}{3}}\end{matrix}\right.$
Vậy `x = 0, x =`$\sqrt{\dfrac{7}{3}}$ hoặc `x =` $-\sqrt{\dfrac{7}{3}}$