` a, `
` A(x) = 6 – 4x^5 + 2x^4 + 4x^5 + 2x^2 – 5x^3 – 9x – x^4 `
` = (-4x^5 + 4x^5) + (2x^4 - x^4)-5x^3+2x^2 -9x+6`
`=x^4 - 5x^3 + 2x^2 - 9x + 6`
bậc là `4`
` B(x) = 2x^2 + 6x^3 – 4x^2 – 4x^4 – 6 + 3x^4 `
`=(-4x^4 +3x^4) + 6x^3 +(2x^2 - 4x^2)-6`
`=-x^4 + 6x^3 - 2x^2 - 6`
bậc là `4`
`b,`
`A(x) = x^4 - 5x^3 + 2x^2 - 9x + 6`
+
`B(x) =-x^4 + 6x^3 - 2x^2 - 6`
_________________________________________
`M(x)= x^3 -9x `
Vậy `M(x) = x^3 - 9x`
`A(x) = x^4 - 5x^3 + 2x^2 - 9x + 6`
-
`B(x) = -x^4 + 6x^3 - 2x^2 - 6`
__________________________________________
`N(x) = 2x^4 - 11x^3 + 4x^2 - 9x + 12`
Vậy `N(x) = 2x^4 - 11x^3 + 4x^2 - 9x + 12`
`c,`
Ta có :
`M(x) = x^3 - 9x`
`=x(x^2-9)`
`=x(x^2-3^2)`
`=x(x-3)(x+3)`
⇒ \(\left[ \begin{array}{l}x=0\\x=±3\end{array} \right.\)
Vậy nghiệm của `M(x)` là : `x = 0 hoặc x = ±3`