Với `x>0;x\ne1` thì
`B=((x+sqrt{x}+1)/(xsqrt{x}-1)-(sqrt{x}+1)/(xsqrt{x}+1)):1/(sqrt{x}-1)`
`B=((x+sqrt{x}+1)/((sqrt{x}-1)(x+sqrt{x}+1))-(sqrt{x}+1)/((sqrt{x}+1)(x-sqrt{x}+1))).(sqrt{x}-1)`
`B=(1/(sqrt{x}-1)-1/(x-sqrt{x}+1)).(sqrt{x}-1)`
`B=(x-sqrt{x}+1-sqrt{x}+1)/((sqrt{x}-1)(x-sqrt{x}+1)).(sqrt{x}-1)`
`B=(x-2sqrt{x}+2)/(x-sqrt{x}+1)`
Vậy `B=(x-2sqrt{x}+2)/(x-sqrt{x}+1)` với `x>0;x\ne1`