Đáp án:
`a, 5x(x - 3)^2 - 5(x - 1)^3 + 15(x - 2)(x + 2) = 5`
`⇔ 5x(x^2 - 6x + 9) - 5(x^3 - 3x^2 + 3x - 1) + 15(x^2 - 2^2) = 5`
`⇔ 5x^3 - 30x^2 + 45x - 5x^3 + 15x^2 - 15x + 5 + 15x^2 - 60 = 5`
`⇔ (5x^3 - 5x^3) + (-30x^2 + 15x^2 + 15x^2) + (45x - 15x) + (5 - 60) = 5`
`⇔ 30x - 55 = 5`
`⇔ 30x = 5 + 55 = 60`
`⇒ x = 60 : 30`
`⇒ x = 2`
Vậy `x= 2`
`b, (2x - 3)^3 - 4x(2x - 9) = 27`
`⇔ (2x)^3 - 3.(2x)^2 . 3 + 3.2x.3^2 - 3^3 - 8x^2 + 36x = 27`
`⇔ 8x^3 - 36x^2 + 54x - 27 - 8x^2 + 36x = 27`
`⇔ 8x^3 + (-36x^2 - 8x^2) + (54x + 36x) - 27 - 27 = 0`
`⇔ 8x^3 - 44x^2 + 90x - 54 = 0`
`⇔ 2(4x^3 - 22x^2 + 45x - 27) = 0`
`⇔ 4x^3 - 22x^2 + 45x - 27 = 0`
`⇔ 4x^3 - 4x^2 - 18x^2 + 18x + 27x - 27 = 0`
`⇔ 4x^2 (x - 1) - 18x(x - 1) + 27(x - 1) = 0`
`⇔ (x - 1)(4x^2 - 18x + 27) = 0`
`⇔ (x - 1)(4x^2 - 18x + 81/4 + 27/4) = 0`
`⇔ (x - 1)[(2x)^2 - 2.2x . 9/2 + (9/2)^2 + 27/4) = 0`
`⇔ (x - 1)[(2x - 9/2)^2 + 27/4) = 0`
`⇔ x - 1 = 0` (vì `[(2x - 9/2)^2 + 27/4 ≥ 27/4 > 0`)
`⇒ x = 1`
Vậy `x = 1`
`c, (x - 2)^3 + 6(x + 1)^2 - (x - 3)(x^2 + 3x + 9) = 97`
`⇔ x^3 - 3.x^2 . 2 + 3.x.2^2 - 8 + 6(x^2 + 2x + 1) - (x^3 - 3^3) = 97`
`⇔ x^3 - 6x^2 + 12x - 8 + 6x^2 + 12x + 6 - x^3 + 27 = 97`
`⇔ (x^3 - x^3) + (-6x^2 + 6x^2) + (12x + 12x) + (- 8 + 6 + 27) = 97`
`⇔ 24x + 25 = 97`
`⇔ 24x = 97 - 25 = 72`
`⇒ x = 72 : 24`
`⇒ x = 3`
Vậy `x = 3`
`d, (x - 1)(x^2 + x + 1) - x(x + 2)(x - 2) = 5`
`⇔ x^3 - 1^3 - x(x^2 - 2^2) = 5`
`⇔ x^3 - 1 - x(x^2 - 4) = 5`
`⇔ x^3 - 1 - x^3 + 4x = 5`
`⇔ (x^3 - x^3) + 4x - 1 = 5`
`⇔ 4x - 1 = 5`
`⇔ 4x = 5 + 1 = 6`
`⇔ x = 6/4 = 3/2`
Vậy `x = 3/2`
`e, (x + 1)^3 - x^2 (x + 3) = 2`
`⇔ x^3 + 3x^2 + 3x + 1 - x^3 - 3x^2 = 2`
`⇔ (x^3 - x^3) + (3x^2 - 3x^2) + 3x + 1 = 2`
`⇔ 3x + 1 = 2`
`⇔ 3x = 2 - 1 = 1`
`⇔ x = 1/3`
Vậy `x = 1/3`