`a)A=(\frac{1}{1-x}+\frac{2}{x+1}-\frac{5-x}{1-x^2}):\frac{1-2x}{x^2-1}(x\ne+-1)`
`=(\frac{-1}{x-1}+\frac{2}{x+1}+\frac{5-x}{x^2-1}).\frac{x^2-1}{1-2x}`
`=(\frac{-(x+1)+2(x-1)+5-x}{(x-1)(x+1)}).\frac{(x-1)(x+1)}{1-2x}`
`=\frac{-x-1+2x-2+5-x}{(x-1)(x+1)}.\frac{(x-1)(x+1)}{1-2x}`
`=\frac{2(x-1)(x+1)}{(x-1)(x+1)(1-2x)}`
`=\frac{2}{1-2x}`
`b)x^2-3x+2=0`
`<=>x^2-x-2x+2=0`
`<=>x(x-1)-2(x-1)=0`
`<=>(x-1)(x-2)=0`
`<=>x=1(loại)` hoặc `x=2`(tm)
vậy `x=2`
Thay `x=2` vào `A`, ta có:
`A=\frac{2}{1-2.2}=\frac{2}{1-4}=\frac{2}{-3}=-2/3`
Vậy `x^2-3x+2=0<=>A=-2/3`
`c)A=2`
`<=>\frac{2}{1-2x}=2`
`<=>2=2(1-2x)`
`<=>2=2-4x`
`<=>4x=0`
`<=>x=0`
`->x=0` thì `A=2`
`d)\frac{2}{1-2x}`
Để `A\inZZ` thì `2\vdots 1-2x`
`->1-2x\in Ư(2)\in{+-1;+-2}`
`->2x\in{1+1;1-1;1+2;1-2}`
`->2x\in{2;0;3;1}`
`->x\in{1;0;3/2;1/2}`
mà `x\inZZ`
`->x\in{1;0}`
`->x\in{0;1}` thì `A\inZZ`
`e)|A|=A`
`->A>=0`
`<=>\frac{2}{1-2x}>=0`
mà `2>0`
`<=>1-2x>=0`
`<=>2x<=1`
`<=>x<=1/2`
Vậy `x<=1/2;x\ne1` thì `|A|=A`