Đáp án:
$\begin{array}{l}
a)A - \dfrac{1}{3}\\
= \dfrac{{\sqrt x }}{{x + \sqrt x + 1}} - \dfrac{1}{3}\\
= \dfrac{{3\sqrt x - x - \sqrt x - 1}}{{3\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{ - x + 2\sqrt x - 1}}{{3\left( {x + 2.\sqrt x .\dfrac{1}{2} + \dfrac{1}{4} + \dfrac{3}{4}} \right)}}\\
= \dfrac{{ - {{\left( {\sqrt x - 1} \right)}^2}}}{{3.{{\left( {\sqrt x + \dfrac{1}{2}} \right)}^2} + \dfrac{9}{4}}}\\
Do:\left\{ \begin{array}{l}
- {\left( {\sqrt x - 1} \right)^2} < 0\left( {do:x \ne 1} \right)\\
3.{\left( {\sqrt x + \dfrac{1}{2}} \right)^2} + \dfrac{9}{4} > 0
\end{array} \right.\\
\Leftrightarrow \dfrac{{ - {{\left( {\sqrt x - 1} \right)}^2}}}{{3.{{\left( {\sqrt x + \dfrac{1}{2}} \right)}^2} + \dfrac{9}{4}}} < 0\\
\Leftrightarrow A - \dfrac{1}{3} < 0\\
\Leftrightarrow A < \dfrac{1}{3}\\
b)M - \dfrac{1}{2}\\
= \dfrac{{\sqrt x + 1}}{{2\sqrt x }} - \dfrac{1}{2}\\
= \dfrac{{\sqrt x + 1 - \sqrt x }}{{2\sqrt x }}\\
= \dfrac{1}{{2\sqrt x }} > 0\left( {do:x > 0} \right)\\
\Leftrightarrow M > \dfrac{1}{2}\\
c)N = \dfrac{3}{{\sqrt x + 3}} > 0\\
N - 1 = \dfrac{3}{{\sqrt x + 3}} - 1\\
= \dfrac{{3 - \sqrt x - 3}}{{\sqrt x + 3}}\\
= \dfrac{{ - \sqrt x }}{{\sqrt x + 3}} \le 0\left( {do:\sqrt x \ge 0} \right)\\
\Leftrightarrow N \le 1\\
\Leftrightarrow \sqrt N \le 1\\
N - \sqrt N = \sqrt N \left( {\sqrt N - 1} \right) \le 0\\
\Leftrightarrow N \le \sqrt N \\
d)P = \dfrac{1}{{\sqrt x + 2}} > 0\\
\Leftrightarrow P = \left| P \right|\\
e)A = \dfrac{{\sqrt x }}{{\sqrt x + 3}} > 0\\
\Leftrightarrow A - 1\\
= \dfrac{{\sqrt x }}{{\sqrt x + 3}} - 1\\
= \dfrac{{\sqrt x - \sqrt x - 3}}{{\sqrt x + 3}}\\
= \dfrac{{ - 3}}{{\sqrt x + 3}} < 0\left( {do:\sqrt x + 3 > 0} \right)\\
\Leftrightarrow A - 1 < 0\\
{A^2} - A = A.\left( {A - 1} \right) < 0\left( {do:\left\{ \begin{array}{l}
A > 0\\
A - 1 < 0
\end{array} \right.} \right)\\
\Leftrightarrow {A^2} < A\\
hay\,A > {A^2}
\end{array}$
$\begin{array}{l}
9)\\
a)P - 1\\
= \dfrac{{\sqrt x - 1}}{{\sqrt x + 1}} - 1\\
= \dfrac{{\sqrt x - 1 - \sqrt x - 1}}{{\sqrt x + 1}}\\
= \dfrac{{ - 2}}{{\sqrt x + 1}} < 0\left( {do:\sqrt x + 1 > 0} \right)\\
\Leftrightarrow P < 1\\
b)P - \dfrac{1}{2}\\
= \dfrac{{x - \sqrt x - 4}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}} - \dfrac{1}{2}\\
= \dfrac{{2x - 2\sqrt x - 8 - \left( {x - 9} \right)}}{{2\left( {x - 9} \right)}}\\
= \dfrac{{x - 2\sqrt x + 1}}{{2\left( {x - 9} \right)}}\\
= \dfrac{{{{\left( {\sqrt x - 1} \right)}^2}}}{{2\left( {x - 9} \right)}} \ge 0\left( {do:\left\{ \begin{array}{l}
{\left( {\sqrt x - 1} \right)^2} \ge 0\\
x - 9 > 0
\end{array} \right.} \right)\\
\Leftrightarrow P \ge \dfrac{1}{2}\\
c)\\
P - 1 = \dfrac{{\sqrt x }}{{\sqrt x - 1}} - 1\\
= \dfrac{{\sqrt x - \sqrt x + 1}}{{\sqrt x - 1}}\\
= \dfrac{1}{{\sqrt x - 1}} > 0\left( {do:\sqrt x - 1 > 0} \right)\\
\Leftrightarrow P > 1\\
\Leftrightarrow \sqrt P > 1\\
P - \sqrt P = \sqrt P .\left( {\sqrt P - 1} \right) > 0\\
\Leftrightarrow P > \sqrt P \,khi:x > 1\\
d)B - 2\\
= \dfrac{{x + \sqrt x + 1}}{{x + 1}} - 2\\
= \dfrac{{x + \sqrt x + 1 - 2x - 2}}{{x + 1}}\\
= \dfrac{{ - x + \sqrt x - 1}}{{x + 1}}\\
= - \dfrac{{x - \sqrt x + 1}}{{x + 1}}\\
= - \dfrac{{{{\left( {\sqrt x - \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}}{{x + 1}} < 0\\
\left( {do:{{\left( {\sqrt x - \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4} > 0} \right)\\
\Leftrightarrow B < 2
\end{array}$