Đáp án:
$\begin{array}{l}
2)a)Dkxd:x > 0\\
S = \left( {\dfrac{1}{{\sqrt x }} + \dfrac{{\sqrt x }}{{\sqrt x + 1}}} \right):\dfrac{{\sqrt x }}{{x + \sqrt x }}\\
= \dfrac{{\sqrt x + 1 + \sqrt x .\sqrt x }}{{\sqrt x \left( {\sqrt x + 1} \right)}}.\dfrac{{\sqrt x \left( {\sqrt x + 1} \right)}}{{\sqrt x }}\\
= \dfrac{{x + \sqrt x + 1}}{{\sqrt x }}\\
b)S = \dfrac{{x + \sqrt x + 1}}{{\sqrt x }} = \sqrt x + 1 + \dfrac{1}{{\sqrt x }}\\
Theo\,Co - si:\\
\sqrt x + \dfrac{1}{{\sqrt x }} \ge 2\sqrt {\sqrt x .\dfrac{1}{{\sqrt x }}} = 2\\
\Leftrightarrow \sqrt x + \dfrac{1}{{\sqrt x }} + 1 \ge 3\\
\Leftrightarrow S \ge 3\\
\Leftrightarrow GTNN:S = 3\,khi:x = 1\\
3)\\
Dkxd:x \ge 0;x \ne 4\\
a)M = \dfrac{{x + 12}}{{x - 4}} + \dfrac{1}{{\sqrt x + 2}} - \dfrac{4}{{\sqrt x - 2}}\\
= \dfrac{{x + 12 + \sqrt x - 2 - 4\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{x + 12 + \sqrt x - 2 - 4\sqrt x - 8}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{x - 3\sqrt x + 2}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \dfrac{{\sqrt x - 1}}{{\sqrt x + 2}}\\
b)x = 25\left( {tmdk} \right)\\
\Leftrightarrow \sqrt x = 5\\
\Leftrightarrow M = \dfrac{{5 - 1}}{{5 + 2}} = \dfrac{4}{7}\\
c)\dfrac{1}{M} = 1:\dfrac{{\sqrt x - 1}}{{\sqrt x + 2}}\\
= \dfrac{{\sqrt x + 2}}{{\sqrt x - 1}} = \dfrac{{\sqrt x - 1 + 3}}{{\sqrt x - 1}}\\
= 1 + \dfrac{3}{{\sqrt x - 1}}\\
\dfrac{1}{M} \in Z\\
\Leftrightarrow \dfrac{3}{{\sqrt x - 1}} \in Z\\
\Leftrightarrow \sqrt x - 1 \in \left\{ { - 1;1;3} \right\}\left( {do:\sqrt x - 1 \ge - 1} \right)\\
\Leftrightarrow \sqrt x \in \left\{ {0;2;4} \right\}\\
\Leftrightarrow x \in \left\{ {0;4;16} \right\}\left( {x \ne 4} \right)\\
\Leftrightarrow x \in \left\{ {0;16} \right\}\\
Vậy\,x \in \left\{ {0;16} \right\}
\end{array}$