Đáp án:
$\begin{array}{l}
a)3\sqrt 7 - \dfrac{1}{4}\sqrt {28} - \dfrac{3}{5}\sqrt {175} + \sqrt {\dfrac{{63}}{4}} \\
= 3\sqrt 7 - \dfrac{1}{4}.2\sqrt 7 - \dfrac{3}{5}.5\sqrt 7 + \dfrac{1}{2}.3\sqrt 7 \\
= \sqrt 7 \\
b)\left( {\dfrac{1}{{\sqrt 2 - \sqrt 3 }} + \dfrac{{\sqrt 2 }}{{\sqrt 6 + \sqrt 5 }} + \dfrac{{5\sqrt 2 + 2\sqrt 5 }}{{\sqrt 2 + \sqrt 5 }}} \right).\sqrt {5 + \sqrt {24} } \\
= \left( {\dfrac{{\sqrt 2 + \sqrt 3 }}{{2 - 3}} + \dfrac{{\sqrt 2 \left( {\sqrt 6 - \sqrt 5 } \right)}}{{6 - 5}} + \dfrac{{\sqrt {10} \left( {\sqrt 5 + \sqrt 2 } \right)}}{{\sqrt 2 + \sqrt 5 }}} \right)\\
.\sqrt {5 + 2\sqrt 6 } \\
= \left( { - \sqrt 2 - \sqrt 3 + 2\sqrt 3 - \sqrt {10} + \sqrt {10} } \right).\sqrt {{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}} \\
= \left( {\sqrt 3 - \sqrt 2 } \right).\left( {\sqrt 3 + \sqrt 2 } \right)\\
= 3 - 2\\
= 1\\
c)\sqrt {11 - 2\sqrt {30} } - \sqrt {29 - 4\sqrt {30} } \\
= \sqrt {{{\left( {\sqrt 6 - \sqrt 5 } \right)}^2}} - \sqrt {{{\left( {2\sqrt 6 - \sqrt 5 } \right)}^2}} \\
= \sqrt 6 - \sqrt 5 - \left( {2\sqrt 6 - \sqrt 5 } \right)\\
= - \sqrt 6 \\
d)\left| {6 - 5\sqrt 3 } \right|.\left( {6 + 2\sqrt 3 } \right) - 6\sqrt {10 + 3\sqrt {{{\left( {4\sqrt 3 - 7} \right)}^2}} } \\
= \left( {5\sqrt 3 - 6} \right).\left( {6 + 2\sqrt 3 } \right) - 6.\sqrt {10 + 3\left( {7 - 4\sqrt 3 } \right)} \\
= 18\sqrt 3 - 6 - 6\sqrt {31 - 12\sqrt 3 } \\
= 18\sqrt 3 - 6 - 6\sqrt {27 - 2.3\sqrt 3 .2 + 4} \\
= 18\sqrt 3 - 6 - 6\sqrt {{{\left( {3\sqrt 3 - 2} \right)}^2}} \\
= 18\sqrt 3 - 6 - 6\left( {3\sqrt 3 - 2} \right)\\
= 18\sqrt 3 - 6 - 18\sqrt 3 + 12\\
= 6
\end{array}$