Đáp án:
Giải thích các bước giải:
`A` = `(1.2-1)/(1.2)+(2.3-1)/(1.2.3)+(3.4-1)/(1.2.3.4)+...+(999.1000-1)/(1.2.3.4× .... ×1000)` < 2
`A` = `(1.2-1)/(2!)+(2.3-1)/(3!)+(3.4-1)/(4!)+...+(999.1000-1)/(1000!)` < 2
$=1.2-\dfrac{1}{2!}+2.3-\dfrac{1}{3!}+3.4-\dfrac{1}{4!}+...+999.1000-\dfrac{1}{1000!}$
$=1. \dfrac{2}{2!}-\dfrac{1}{2!}+2. \dfrac{3}{3!}-\dfrac{1}{3!}+3. \dfrac{4}{4!}-\dfrac{1}{4!}+...+999. \dfrac{1000}{1000!}-\dfrac{1}{1000!}$
$=(1. \dfrac{2}{2!} +2. \dfrac{3}{3!}+3. \dfrac{4}{4!}+...+99. \dfrac{1000}{1000})$
$=(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{1000})$
$=(1+1+\dfrac{1}{2!}+...+\dfrac{1}{998!})-(\dfrac{1}{2!}$ + $\dfrac{1}{3!}!+\dfrac{1}{4!}+...+\dfrac{1}{1000})$
$=1+1-\dfrac{1}{999!}-\dfrac{1}{1000}$ $=2-\dfrac{1}{999!}-\dfrac{1}{1000}!$
`mà` `2-1999!-11000! < 2`
`=>` `A < 2`
chúc bạn học tốt T^T