Chứng minh rằng căn(9 − căn17)*căn(9 + căn17) = 8

chứng minh rằng

\(\sqrt{9-\sqrt{17}}\) . \(\sqrt{9+\sqrt{17}}\) = 8

\(2\sqrt{2}\)\(\left(\sqrt{3}-2\right)\) + \(\left(1+2\sqrt{2}\right)^2\)- \(2\sqrt{6}\) = 9

\(\sqrt{7-2\sqrt{10}}\) + \(\sqrt{2}\) = \(\sqrt{5}\)

\(\sqrt{\sqrt{3}+\sqrt{2}}\) . \(\sqrt{\sqrt{3}-\sqrt{2}}\) = 1

\(\left(4+\sqrt{15}\right)\) \(\left(\sqrt{10}-\sqrt{6}\right)\) \(\sqrt{4-\sqrt{15}}\) = 2

Các câu hỏi liên quan