Đáp án:
Cách chứng minh 1 tứ giác là hình thang cân.
Bước 1 : Chứng minh tứ giác đó là hình thang à Chứng minh tứ giác đó có 2 cạnh song song với nhau à dựa vào các cách chứng minh song song như : Hai góc đồng vị bằng nhau, hai góc so le trong bằng nhau, hai góc trong cùng phía bù nhau hoặc định lý từ vuông góc đến song song.
Bước 2 : Chứng minh hình thang đó là hình thang cân.
Ví dụ: Cho hình thang ABCD (AB // CD). Gọi E là giao điểm của hai đường thẳng AD và BC. Gọi M, N, P, Q theo thứ tự là các trung điểm của các đoạn thẳng AE, BE, AC và BD. Chứng minh tứ giác MNPQ là hình thang.
Ta có:
M là trung điểm của AE
N là trung điểm của BE
=> MN là đường trung bình ứng với cạnh AB của ΔEAB, suy ra MN // AB (1)
Gọi R là trung điểm của AD
Trong ΔADB, RQ là đường trung bình, suy ra RQ // AB
Trong ΔCAD, RP là đường trung bình, suy ra RP // DC
mà DC // AB nên RP // AB.
RQ và RP cùng đi qua R và cùng song song với AB nên theo tiên đề Ơclit thì RQ ≡ RP
Từ đây ta suy ra QP // AB (2)
Từ (1) và (2) suy ra MN // PQ => Tứ giác MNPQ là hình thang do một cặp cạnh đối
( hình tự vẽ bạn nha)