$f)cos2xcosx+sinxcos3x=sin2xsinx-sin3xcosx$
$⇔-sin2xsinx+cos2xcosx=-(sinxcos3x+sin3xcosx)$
$⇔cos(2x+x)=-sin(3x+x)$
$⇔cos3x=-sin4x$
$⇔cos3x=cos(\dfrac{\pi}{2}+4x)$
$⇔$\(\left[ \begin{array}{l}3x=\dfrac{\pi}{2}+4x+k2\pi\\3x=-\dfrac{\pi}{2}-4x+k2\pi\end{array} \right.\)
$⇔$\(\left[ \begin{array}{l}x=-\dfrac{\pi}{2}-k2\pi\\x=-\dfrac{\pi}{14}+\dfrac{k2\pi}{7}\end{array} \right.\) $(k∈Z)$
$g)sinx+sin2x+sin3x=1+cosx+cos2x$
$⇔sin2x+(sin3x+sinx)=1+cosx+2cos^2x-1$
$⇔sin2x+2sin2xcosx=1+cosx+2cos^2x-1$
$⇔sin2x(1+2cosx)-cosx(1+2cosx)=0$
$⇔(1+2cosx)(sin2x-cosx)=0$
$1+2cosx=0$
$⇔cosx=-\dfrac{1}{2}=cos(\dfrac{2\pi}{3})$
$⇔x=±\dfrac{2\pi}{3}+k2\pi(k∈Z)$
$sin2x-cosx=0$
$⇔sin2x=cosx$
$⇔sin2x=sin(\dfrac{\pi}{2}-x)$
$⇔$\(\left[ \begin{array}{l}2x=\dfrac{\pi}{2}-x+k2\pi\\2x=\pi-\dfrac{\pi}{2}+x+k2\pi\end{array} \right.\)
$⇔$\(\left[ \begin{array}{l}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{2}+k2\pi\end{array} \right.\) $(k∈Z)$