Đáp án:
\(\left[ \begin{array}{l}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{3}+k\pi\end{array} \right.\)`(kinZZ)`
Giải thích các bước giải:
`2cosx.tan(x-pi/3)=0`
ĐKXĐ: `cos(x-pi/3)ne0`
`PT<=>`\(\left[ \begin{array}{l}\cos x=0\\\tan(x-\dfrac{\pi}{3})=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\dfrac{\pi}{2}+k\pi\\\sin(x-\dfrac{\pi}{3})=0\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\dfrac{\pi}{2}+k\pi\\x-\dfrac{\pi}{3}=k\pi\end{array} \right.\)
`<=>`\(\left[ \begin{array}{l}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{3}+k\pi\end{array} \right.\)`(kinZZ)`