`#tnvt`
`a)2x^2+2y^2-2xy+2x+2y+35`
`=x^2-2xy+y^2+x^2+2x+1+y^2+2y+1+33`
`=(x-y)^2+(x+1)^2+(y+1)^2+33`
Với mọi `x,y\inRR,` ta có: `{((x-y)^2>=0),((x+1)^2>=0),((y+1)^2>=0):}`
`=>(x-y)^2+(x+1)^2+(y+1)^2+33>=33`
Dấu `=` xảy ra khi `{(x-y=0),(x+1=0),(y+1=0):}`
`<=>{(x=y),(x=-1),(y=-1):}`
Vậy `GTNNNN=33` khi `x=y=-1`
`b)(x-1)^2+(x+2)^2`
`=x^2-2x+1+x^2+4x+4`
`=2x^2+2x+5`
`=2.x^2+2.2.x. 1/2 +2.1/4+9/2`
`=2(x^2+2.x. 1/2+1/4)+9/2`
`=2(x+1/2)^2+9/4`
Với mọi `x\inRR,` ta có: `(x+1/2)^2>=0`
`=>2(x+1/2)^2+9/4>=9/4`
Dấu `=` xảy ra khi `x+1/2=0<=>x=-1/2`
Vậy `GTNNNN=9/4` khi `x=-1/2`
`c)x^2+y^2-x+6y+20`
`=x^2-2.x. 1/2+1/4+y^2+2.y.3+9+43/4`
`=(x-1/2)^2+(y+3)^2+43/4`
Với mọi `x,y\inRR,` ta có: `{((x-1/2)^2>=0),((y+3)^2>=0):}`
`=>(x-1/2)^2+(y+3)^2+43/4>=43/4`
Dấu `=` xảy ra khi `x-1/2=0<=>x=1/2`
`y+3=0<=>y=-3`
Vậy `GTNNNN=43/4` khi `(x;y)=(1/2;-3)`