Đáp án:
$\begin{array}{l}
12)a)Dkxd:\left\{ \begin{array}{l}
x > 0\\
x \ne 9\\
x \ne 4
\end{array} \right.\\
b)Q = \left( {\dfrac{1}{{\sqrt x - 3}} - \dfrac{1}{{\sqrt x }}} \right):\left( {\dfrac{{\sqrt x + 3}}{{\sqrt x - 2}} - \dfrac{{\sqrt x + 2}}{{\sqrt x - 3}}} \right)\\
= \dfrac{{\sqrt x - \left( {\sqrt x - 3} \right)}}{{\sqrt x \left( {\sqrt x - 3} \right)}}:\dfrac{{\left( {\sqrt x + 3} \right)\left( {\sqrt x - 3} \right) - \left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}\\
= \dfrac{3}{{\sqrt x \left( {\sqrt x - 3} \right)}}.\dfrac{{\left( {\sqrt x - 2} \right)\left( {\sqrt x - 3} \right)}}{{x - 9 - x + 4}}\\
= \dfrac{3}{{\sqrt x }}.\dfrac{{\sqrt x - 2}}{{ - 5}}\\
= \dfrac{{6 - 3\sqrt x }}{{5\sqrt x }}\\
c)Q < 1\\
\Leftrightarrow \dfrac{{6 - 3\sqrt x }}{{5\sqrt x }} - 1 < 0\\
\Leftrightarrow \dfrac{{6 - 3\sqrt x - 5\sqrt x }}{{5\sqrt x }} < 0\\
\Leftrightarrow 6 - 8\sqrt x < 0\\
\Leftrightarrow \sqrt x > \dfrac{3}{4}\\
\Leftrightarrow x > \dfrac{9}{{16}}\\
Vay\,x > \dfrac{9}{{16}};x \ne 4;x \ne 9\\
13)a)C = \left( {\dfrac{{\sqrt x }}{{3 + \sqrt x }} + \dfrac{{x + 9}}{{9 - x}}} \right):\left( {\dfrac{{3\sqrt x + 1}}{{x - 3\sqrt x }} - \dfrac{1}{{\sqrt x }}} \right)\\
= \dfrac{{\sqrt x \left( {\sqrt x - 3} \right) - x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}:\dfrac{{3\sqrt x + 1 - \left( {\sqrt x - 3} \right)}}{{\sqrt x \left( {\sqrt x - 3} \right)}}\\
= \dfrac{{x - 3\sqrt x - x - 9}}{{\left( {\sqrt x - 3} \right)\left( {\sqrt x + 3} \right)}}.\dfrac{{\sqrt x \left( {\sqrt x - 3} \right)}}{{2\sqrt x + 4}}\\
= \dfrac{{ - 3\sqrt x - 9}}{{\sqrt x + 3}}.\dfrac{{\sqrt x }}{{2\sqrt x + 4}}\\
= \dfrac{{ - 3\sqrt x }}{{2\sqrt x + 4}}\\
b)C < - 1\\
\Leftrightarrow \dfrac{{ - 3\sqrt x }}{{2\sqrt x + 4}} + 1 < 0\\
\Leftrightarrow \dfrac{{ - 3\sqrt x + 2\sqrt x + 4}}{{2\sqrt x + 4}} < 0\\
\Leftrightarrow \dfrac{{4 - \sqrt x }}{{2\sqrt x + 4}} < 0\\
\Leftrightarrow 4 - \sqrt x < 0\\
\Leftrightarrow \sqrt x > 4\\
\Leftrightarrow x > 16\\
Vay\,x > 16
\end{array}$