a, Có ABCD là hình bình hành => AB= DC, AD= BC và ∠BAD= ∠BCD, ∠ABC= ∠ADC
Có E là trung điểm AD => AE= ED= 1/2. AD
F là trung điểm BC => FC= BF= 1/2. BC
Mà AD= BC
=> AE= ED= FC= BF
Xét ΔABE và ΔCDF có
AB= DC
∠BAE= ∠FCD
AE= CF
=> ΔABE= ΔCDF (c.g.c)
=> BE= DF (2 cạnh tương ứng)
và ∠ABE= ∠CDF (2 góc tương ứng)
b, Xét tứ giác EBFD có BE= DF, ED= BF
=> EBFD là hình bình hành