Đáp án:
a, $\sqrt[]{\frac{9}{169}}$ + $\frac{\sqrt[]{192}}{\sqrt[]{12}}$
= $\frac{\sqrt[]{9}}{\sqrt[]{169}}$ + $\sqrt[]{\frac{192}{12}}$
`= 3/13 +` $\sqrt[]{16}$
`= 3/13 + 4`
`= 55/13`
c, $\frac{\sqrt[]{84^2-37^2}}{\sqrt[]{47}}$
= $\frac{\sqrt[]{(84-37)(84+37)}}{\sqrt[]{47}}$
= $\frac{\sqrt[]{47.121}}{\sqrt[]{47}}$
= $\frac{\sqrt[]{47} . \sqrt[]{121}}{\sqrt[]{47}}$
= $\sqrt[]{121}$
`= 11`
e, $\sqrt[]{(√3-1)^2}$ `-` $\sqrt[]{(√3+1)^2}$ `-3√2`
`= |√3-1|-|√3+1|-3√2`
`= √3-1-√3-1-3√2`
`= (√3-√3)+(-1-1)-3√2`
`= -2-3√2`