Đáp án `+` Giải thích các bước giải `!`
`(x-1)^3+(x+2)^3 = (2x+1)^3`
`<=> x^3-3x^2+3x-1+x^3+6x^2+12x+8 = 8x^3+12x^2+6x+1`
`<=> (x^3+x^3)+(-3x^2+6x^2)+(3x+12x)+(-1+8)-8x^3-12x^2-6x-1 = 0`
`<=> 2x^3+3x^2+15x+7-8x^3-12x^2-6x-1 = 0`
`<=> (2x^3-8x^3)+(3x^2-12x^2)+(15x-6x)+(7-1) = 0`
`<=> -6x^3-9x^2+9x+6 = 0`
`<=> -3(2x^3+3x^2-3x-2) = 0`
`<=> 2x^3+3x^2-3x-2 = 0`
`<=> (2x^3-2)+(3x^2-3x) = 0`
`<=> 2(x^3-1)+3x(x-1) = 0`
`<=> 2(x-1)(x^2+x+1)+3x(x-1) = 0`
`<=> (x-1)(2x^2+2x+2+3x) = 0`
`<=> (x-1)(2x^2+5x+2) = 0`
`<=> (x-1)(2x^2+4x+x+2) = 0`
`<=> (x-1)[(2x^2+4x)+(x+2)] = 0`
`<=> (x-1)[2x(x+2)+(x+2)] = 0`
`<=> (x-1)(2x+1)(x+2) = 0`
`<=>` \(\left[ \begin{array}{l}x-1=0\\2x+1=0\\x+2=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=1\\2x=-1\\x=-2\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac{1}{2}\\x=-2\end{array} \right.\)
Vậy `S= {1; -(1)/2; -2}`