Đáp án: + Giải thích các bước giải:
`1) `
`a) (2x-1)^3=8`
`⇔(2x-1)^3=2^3`
`⇔2x-1=2`
`⇔2x=3`
`⇔x=3/2`
Vậy `x=3/2`
`b)(2x-3)^2=9`
`⇔`\(\left[ \begin{array}{l}2x-3=3\\2x-3=-3\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}2x=6\\2x=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=3\\x=0\end{array} \right.\)
Vậy `x=3` hoặc `x=0`
`2)`
`a)x^2=x^5`
`⇔x^2-x^5=0`
`⇔x^2(1-x^3)=0`
`⇔`\(\left[ \begin{array}{l}x^2=0\\1-x^3=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=0\\x=1\end{array} \right.\)
Vậy `x=0` hoặc `x=1`
`b) (3y-1)^10=(3y-1)^20`
`⇔(3y-1)^10-(3y-1)^20=0`
`⇔(3y-1)^10 [1-(3y-1)^10]=0`
`⇔`\(\left[ \begin{array}{l}(3y-1)^10=0\\1-(3y-1)^10=0\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}3y-1=0\\(3y-1)^10=1\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}y=\dfrac{1}{3}\\3y-1=1\\3y-1=-1\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}y=\dfrac{1}{3}\\y=\dfrac{2}{3}\\y=0\end{array} \right.\)
Vậy `y=1/3` hoặc `y=2/3` hoặc `y=0`
`c)(x-5)^2=(1-3x)^2`
`⇔`\(\left[ \begin{array}{l}x-5=1-3x\\x-5=-(1-3x)\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x-5=1-3x\\x-5=3x-1\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x+3x=5+1\\x-3x=5-1\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}4x=6\\-2x=4\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=\dfrac{3}{2}\\2x=-4\end{array} \right.\)
`⇔`\(\left[ \begin{array}{l}x=\dfrac{3}{2}\\x=-2\end{array} \right.\)
Vậy `x=3/2` hoặc `x=-2`