a, $9a^{2}$ + 6a + 1
b, $16x^{2}$ - 8xy +$y ^{2}$
c,$25x^{2}$ - 40xy +$16y^{2}$
d, (2a + 3b)($4a^{2}$ - 6ab+ $9b^{2}$ ) = $8a^{3}$ + $27b^{3}$
e , (5x - 4y)($25x^{2}$ +20xy + $16y^{2}$ ) = $125x^{3}$ - $64y^{3}$
f , $8x^{3}$ - $12x^{2}$ + 6x - $1^{3}$ = $(2x -1)^{3}$
g, $27a^{3}$ + 1 =(3a + 1)($9a^{2}$ - 3a + 1)
h, $8x^{3}$ - $a^{3}$ =(2x - a)($4x^{2}$ + 2xa + $a^{2}$ )
i, $125x^{3}$ + $75x^{2}y$ +$15xy^{2}$ = $5x^{3}$ + $y^{3}$