Đáp án:
$\begin{array}{l}
a)Dkxd:x \ge 0;x \ne 1\\
A = \dfrac{{15\sqrt x - 11}}{{x + 2\sqrt x - 3}} + \dfrac{{3\sqrt x - 2}}{{1 - \sqrt x }} - \dfrac{{2\sqrt x + 3}}{{\sqrt x + 3}}\\
= \dfrac{{15\sqrt x - 11 - \left( {3\sqrt x - 2} \right)\left( {\sqrt x + 3} \right) - \left( {2\sqrt x + 3} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{15\sqrt x - 11 - 3x - 9\sqrt x + 2\sqrt x + 6 - 2x + 2\sqrt x - 3\sqrt x + 3}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{ - 5x + 7\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{ - \left( {5\sqrt x - 2} \right)\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 3} \right)}}\\
= \dfrac{{2 - 5\sqrt x }}{{\sqrt x + 3}}\\
b)A = \dfrac{1}{2}\\
\Leftrightarrow \dfrac{{2 - 5\sqrt x }}{{\sqrt x + 3}} = \dfrac{1}{2}\\
\Leftrightarrow 4 - 10\sqrt x = \sqrt x + 3\\
\Leftrightarrow 11\sqrt x = 1\\
\Leftrightarrow \sqrt x = \dfrac{1}{{11}}\\
\Leftrightarrow x = \dfrac{1}{{121}}\left( {tmdk} \right)\\
Vậy\,x = \dfrac{1}{{121}}\\
c)A = \dfrac{{2 - 5\sqrt x }}{{\sqrt x + 3}} = \dfrac{{ - 5\sqrt x - 15 + 17}}{{\sqrt x + 3}}\\
= - 5 + \dfrac{{17}}{{\sqrt x + 3}}\\
Do:\sqrt x + 3 \ge 3\\
\Leftrightarrow \dfrac{1}{{\sqrt x + 3}} \le \dfrac{1}{3}\\
\Leftrightarrow \dfrac{{17}}{{\sqrt x + 3}} \le \dfrac{{17}}{3}\\
\Leftrightarrow - 5 + \dfrac{{17}}{{\sqrt x + 3}} \le \dfrac{2}{3}\\
\Leftrightarrow A \le \dfrac{2}{3}\\
\Leftrightarrow GTLN:A = \dfrac{2}{3}\,khi:x = 0\\
d)A = - 5 + \dfrac{{17}}{{\sqrt x + 3}} \in Z\\
\Leftrightarrow \left( {\sqrt x + 3} \right) = 17\left( {do:\sqrt x + 3 \ge 3} \right)\\
\Leftrightarrow \sqrt x = 14\\
\Leftrightarrow x = 196\left( {tmdk} \right)\\
Vậy\,x = 196
\end{array}$