Đáp án:
Giải thích các bước giải:
f) `y=tan\ (4x+\frac{\pi}{6})`
ĐK: `cos\ (4x+\frac{\pi}{6}) \ne 0`
`⇔ 4x+\frac{\pi}{6} \ne \frac{\pi}{2}+k\pi\ (k \in \mathbb{Z})`
`⇔ 4x \ne \frac{\pi}{3}+k\pi\ (k \in \mathbb{Z})`
`⇔ x \ne \frac{\pi}{12}+k\frac{\pi}{4}\ (k \in \mathbb{Z})`
Vậy `D=\mathbb{R} \\ {\frac{\pi}{12}+k\frac{\pi}{4}\ (k \in \mathbb{Z})}`
g) `y=cot\ (x/2-\pi/3)`
ĐK: `sin\ (x/2-\pi/3) \ne 0`
`⇔ x/2-\pi/3 \ne k\pi\ (k \in \mathbb{Z})`
`⇔ x/2 \ne \frac{\pi}{3}+k\pi\ (k \in \mathbb{Z})`
`⇔ x \ne \frac{2\pi}{3}+k2\pi\ (k \in \mathbb{Z})`
Vậy `D=\mathbb{R} \\ { \frac{2\pi}{3}+k2\pi\ (k \in \mathbb{Z})}`
h) `y=\frac{x}{sin\ 2x-1}`
ĐK: `sin\ 2x-1 \ne 0`
`⇔ sin\ 2x \ne 1`
`⇔ 2x \ne \frac{\pi}{2}+k2\pi\ (k \in \mathbb{Z})`
`⇔ x \ne \frac{\pi}{4}+k\pi\ (k \in \mathbb{Z})`
Vậy `D=\mathbb{R} \\ { \frac{\pi}{4}+k\pi\ (k \in \mathbb{Z})}`