Ta có công thức ${{x}^{k}}-1\,\,\,\vdots \,\,\,x-1$
Ta có hằng đẳng thức: ${{x}^{3}}-1=\left( x-1 \right)\left( {{x}^{2}}+x+1 \right)$
Nên nếu đa thức $\vdots \,\,\,{{x}^{3}}-1$ thì nó cũng $\vdots \,\,\,{{x}^{2}}+x+1$
Câu 1: Chứng minh ${{x}^{2021}}+{{x}^{2020}}+1$ cho hết cho ${{x}^{2}}+x+1$
Xét $\left( {{x}^{2021}}+{{x}^{2020}}+1 \right)-\left( {{x}^{2}}+x+1 \right)$
$=\left( {{x}^{2021}}-{{x}^{2}} \right)+\left( {{x}^{2020}}-x \right)$
$={{x}^{2}}\left( {{x}^{2019}}-1 \right)+x\left( {{x}^{2019}}-1 \right)$
$=\left( {{x}^{2019}}-1 \right)\left( {{x}^{2}}+x \right)$
Vì ${{x}^{2019}}-1={{\left( {{x}^{673}} \right)}^{3}}-1\,\,\,\vdots \,\,\,\left( {{x}^{3}}-1 \right)$
$\Rightarrow \left( {{x}^{2019}}-1 \right)\left( {{x}^{2}}+x \right)\,\,\,\vdots \,\,\,\left( {{x}^{3}}-1 \right)$
$\Rightarrow \left( {{x}^{2019}}-1 \right)\left( {{x}^{2}}+x \right)\,\,\,\vdots \,\,\,\left( {{x}^{2}}+x+1 \right)$
$\Rightarrow \left( {{x}^{2021}}+{{x}^{2020}}+1 \right)-\left( {{x}^{2}}+x+1 \right)\,\,\,\vdots \,\,\,\left( {{x}^{2}}+x+1 \right)$
$\Rightarrow {{x}^{2021}}+{{x}^{2020}}+1\,\,\,\vdots \,\,\,{{x}^{2}}+x+1$
Câu 2: Chứng minh ${{x}^{3k+1}}+{{x}^{2}}+1\,\,\,\vdots \,\,\,{{x}^{2}}+x+1$
Có: ${{x}^{3k+1}}+{{x}^{2}}+1$
$={{x}^{3k+1}}-x+\left( {{x}^{2}}+x+1 \right)$
$=x\left( {{x}^{3k}}-1 \right)+\left( {{x}^{2}}+x+1 \right)$
Vì ${{x}^{3k}}-1\,\,\,\vdots \,\,\,{{x}^{3}}-1$
$\Rightarrow {{x}^{3k}}-1\,\,\,\vdots \,\,\,{{x}^{2}}+x+1$
$\Rightarrow x\left( {{x}^{3k}}-1 \right)+\left( {{x}^{2}}+x+1 \right)\,\,\,\vdots \,\,\,{{x}^{2}}+x+1$
$\Rightarrow {{x}^{3k+1}}+{{x}^{2}}+1\,\,\,\vdots \,\,\,{{x}^{2}}+x+1$
Câu 3: Chứng minh ${{x}^{3k+2}}+x+1\,\,\,\vdots \,\,\,{{x}^{2}}+x+1$
Có ${{x}^{3k+2}}+x+1$
$={{x}^{3k+2}}-{{x}^{2}}+\left( {{x}^{2}}+x+1 \right)$
$={{x}^{2}}\left( {{x}^{3k}}-1 \right)+\left( {{x}^{2}}+x+1 \right)$
Vì ${{x}^{3k-1}}\,\,\,\vdots \,\,\,{{x}^{3}}-1$
$\Rightarrow {{x}^{3k-1}}\,\,\,\vdots \,\,\,{{x}^{2}}+x+1$
$\Rightarrow {{x}^{2}}\left( {{x}^{3k-1}} \right)+\left( {{x}^{2}}+x+1 \right)\,\,\,\vdots \,\,\,{{x}^{2}}+x+1$
$\Rightarrow {{x}^{3k+2}}+x+1\,\,\,\vdots \,\,\,{{x}^{2}}+x+1$
Câu 4: Chứng minh ${{x}^{6}}-1\,\,\,\vdots \,\,\,{{x}^{4}}+{{x}^{2}}+1$
Xét ${{x}^{6}}-1+\left( {{x}^{4}}+{{x}^{2}}+1 \right)$
$={{x}^{6}}+{{x}^{4}}+{{x}^{2}}$
$={{x}^{2}}\left( {{x}^{4}}+{{x}^{2}}+1 \right)\,\,\,\vdots \,\,\,{{x}^{4}}+{{x}^{2}}+1$
$\Rightarrow {{x}^{6}}-1+\left( {{x}^{4}}+{{x}^{2}}+1 \right)\,\,\,\vdots \,\,\,{{x}^{4}}+{{x}^{2}}+1$
$\Rightarrow {{x}^{6}}-1\,\,\,\vdots \,\,\,{{x}^{4}}+{{x}^{2}}+1$