Đáp án:
$\begin{array}{l}
g)\dfrac{2}{{\sqrt 6 + 2}} + \dfrac{{3\sqrt 2 - 2\sqrt 3 }}{{\sqrt 2 - \sqrt 3 }}\\
= \dfrac{{2\left( {\sqrt 6 - 2} \right)}}{{6 - {2^2}}} + \dfrac{{\sqrt 6 \left( {\sqrt 3 - \sqrt 2 } \right)}}{{\sqrt 2 - \sqrt 3 }}\\
= \sqrt 6 - 2 - \sqrt 6 \\
= - 2\\
h)\dfrac{{ - 2}}{{2\sqrt 5 + 3}} + \dfrac{1}{{2\sqrt 5 - 3}} + \dfrac{{2\sqrt 5 }}{{11}}\\
= \dfrac{{ - 2\left( {2\sqrt 5 - 3} \right) + 2\sqrt 5 + 3}}{{{{\left( {2\sqrt 5 } \right)}^2} - {3^2}}} + \dfrac{{2\sqrt 5 }}{{11}}\\
= \dfrac{{ - 4\sqrt 5 + 6 + 2\sqrt 5 + 3}}{{20 - 9}} + \dfrac{{2\sqrt 5 }}{{11}}\\
= \dfrac{{9 - 2\sqrt 5 }}{{11}} + \dfrac{{2\sqrt 5 }}{{11}}\\
= \dfrac{9}{{11}}
\end{array}$