Trong không gian với hệ tọa độ \(Oxyz\) cho hai điểm \(A\left( {1;2; - 1} \right),B\left( {0;4;0} \right)\), mặt phẳng \(\left( P \right)\) có phương trình \(2x - y - 2z + 2017 = 0\). Mặt phẳng \(\left( Q \right)\) đi qua hai điểm \(A,B\) và tạo với mặt phẳng \(\left( P \right)\) một góc nhỏ nhất. \(\left( Q \right)\) có một véc tơ pháp tuyến là \(\overrightarrow {{n_{\left( Q \right)}}} = \left( {1;a;b} \right)\), khi đó \(a + b\) bằng
A.\(4\)
B.\(0\)
C.\(1\)
D.\( - 2\)

Các câu hỏi liên quan