Đáp án đúng: D
Giải chi tiết:\(\begin{array}{l}\,\frac{{{2^{10}}{{.9}^{41}}{{.25}^{23}}}}{{{3^{50}}{{.15}^{35}}{{.10}^9}}} = \frac{{{2^{10}}.{{\left( {{3^2}} \right)}^{41}}.{{\left( {{5^2}} \right)}^{23}}}}{{{3^{50}}.{{\left( {3.5} \right)}^{35}}.{{\left( {2.5} \right)}^9}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{2^{10}}{{.3}^{82}}{{.5}^{46}}}}{{{3^{50}}{{.3}^{35}}{{.5}^{35}}{{.2}^9}{{.5}^9}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{2^{10}}{{.3}^{82}}{{.5}^{46}}}}{{{3^{85}}{{.5}^{44}}{{.2}^9}}}\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{{{2.1.5}^2}}}{{{3^2}.1.1}} = \frac{{50}}{9}\end{array}\)
Chọn D