Chứng minh a + b ≥ 2 cănab
Cho a,b,c > 0. Chứng minh:
a, a + b \(\ge2\sqrt{ab}\)
b, \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{ac}\)
a/ Xét hiệu: \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng) (đpcm)
''='' xảy ra khi a = b
b/ Sửa đề chút nhé: CMR:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\)
Áp dụng bđt AM-GM có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}\cdot\dfrac{1}{b}}=2\sqrt{\dfrac{1}{ab}}=\dfrac{2}{\sqrt{ab}}\);
Tương tự ta có:
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}}\); \(\dfrac{1}{a}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{ac}}\)
Cộng 2 vế ba bđt trên ta được:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\right)\)
\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ac}}\left(đpcm\right)\)
''='' xảy ra khi a = b = c
Tính căn(x^2-6x+9)=2x-3
√x2-6x+9=2x-3
Tính 2cănx/cănx+3 + cănx/cănx−3 − 3x+3/x−9):(2cănx−2/cănx−3 − 1)
\((\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}):(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1)\)
Giải hệ phương trình (căn2−1)x−y=căn2, x+(căn2+1)y=1
\(\left(\sqrt{2}-1\right)x-y=\sqrt{2}\)
\(x+\left(\sqrt{2}+1\right)y=1\)
Chứng minh rằng r/a ≤ căn2 − 1/2
Cho tam giác \(ABC\) vuông tại \(A\) ngoại tiếp đường tròn \(\left(O;r\right)\) , đặt \(BC=a\) .
Chứng minh rằng : \(\dfrac{r}{a}\le\dfrac{\sqrt{2}-1}{2}\)
Rút gọn P=(1/1−cănx − 1/cănx):(2x+cănx−1/1−x + 2xcănx+x−cănx/1+xcănx)
Cho biểu thức P=\(\left(\dfrac{1}{1-\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{2x+\sqrt{x}-1}{1-x}+\dfrac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\)
a, a, Tìm đkcđ
b, Rút gọn
Chứng minh căn (a+b)^2) ≥ (căna+cănb)/ 2
Với a ≥ 0, b ≥ 0, chứng minh
√( (a+b)^2) ≥ (√a+√b)/ 2
giải chi tiết ra giúp. phần giải trên mạng mình k hiểu nên đừng chép
thanks
Tính AH, BC, CH, biết AB =12 ; BH=6
cho tam giác ABC vuông tại A đường cao AH . AB =12 ; BH=6 . tính AH,BC , CH
Giải phương trình (x−1)(x+2)+2căn(x^2−4x+9)−9=0
\(\left(x-1\right)\left(x+2\right)+2\sqrt{x^2-4x+9}-9=0\)
Giải pt trên
Giải hệ phương trình x−12/4=y−9/3=z−1, 3x+5y−z=2
Giải hệ phương trình sau:
a)\(\left\{{}\begin{matrix}\dfrac{x-12}{4}=\dfrac{y-9}{3}=z-1\\3x+5y-z=2\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}\dfrac{a+b}{6}=\dfrac{b+c}{7}=\dfrac{a+c}{8}\\a+b+c=14\end{matrix}\right.\)
Chứng minh rằng tứ giác APMO nội tiếp
Cho nửa đường tròn (O;R) ,đường kính AB, kẻ tiếp tuyến Ax và lấy trên tiếp tuyến đó một điểm P sao cho AP>R, từ P kẻ tiếp tuyến với (O) tại M
a) chứng minh rằng tứ giác APMO nội tiếp.
b) chứng minh BM//OP
c) Đường thẳng vuông góc với AB ở O cắt tia BM tại N.chứng minh OBNP là hình bình hành.
Loga.vn - Cộng Đồng Luyện Thi Trực Tuyến