1) Lập bảng biến thiên và vẽ đồ thị \(\left( P \right)\) của hàm số \(y = {x^2} + 2x-3\)
2) Tìm tọa độ giao điểm của \(\left( P \right)\)và đường thẳng \(d:{\rm{ }}y{\rm{ }} = {\rm{ }}x{\rm{ }}-{\rm{ }}1\)
3) Tìm \(m\) sao cho đường thẳng \(y{\rm{ }} = {\rm{ }}2m\) cắt \(\left( P \right)\) tại hai điểm phân biệt có hoành độ âm.
A.\(\begin{array}{l}2)\,\,A\left( {1;0} \right),B\left( { - 2; - 3} \right)\\3)\,\, - 2 < m < - \frac{3}{2}\end{array}\)
B.\(\begin{array}{l}2)\,\,A\left( {1;0} \right),B\left( {2; - 3} \right)\\3)\,\,\frac{3}{2} < m < 2\end{array}\)
C.\(\begin{array}{l}2)\,\,A\left( { - 1;0} \right),B\left( { - 2; - 3} \right)\\3)\,\,\left[ \begin{array}{l}m - \frac{3}{2}\end{array} \right.\end{array}\)
D.\(\begin{array}{l}2)\,\,A\left( { - 1;0} \right),B\left( {2; - 3} \right)\\3)\,\,\left[ \begin{array}{l}m > 2\\m < \frac{3}{2}\end{array} \right.\end{array}\)