\[\begin{array}{l}
y = \frac{{x + 16}}{{x + m}}\\
TXD:\,\,\,D = R\backslash \left\{ { - m} \right\}.\\
\Rightarrow y' = \frac{{m - 16}}{{{{\left( {x + m} \right)}^2}}}\\
Ham\,\,so\,\,DB\,\,tren\,\,\left( {0;\,\,10} \right) \Leftrightarrow \left\{ \begin{array}{l}
y' > 0\,\,\forall x \in \left( {0;\,\,10} \right)\\
- m \notin \left( {0;\,\,10} \right)
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
m - 16 > 0\\
\left[ \begin{array}{l}
m \ge 10\\
m \le 0
\end{array} \right.
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m > 16\\
\left[ \begin{array}{l}
m \ge 10\\
m \le 0
\end{array} \right.
\end{array} \right. \Leftrightarrow m > 16.\\
Vay\,\,m > 16.
\end{array}\]