\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right)\)
A.\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right) = +\infty\) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right) = - \infty\)
B.\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right) = 5\) \(\mathop {\lim }\limits_{x \to - \infty } \left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right) = - 2\)
C.\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right) = -5\)
D.\(\mathop {\lim }\limits_{x \to \pm \infty } \left( {\sqrt {{x^2} + 2x} - \sqrt {{x^2} - 2x} } \right) = \pm 2\)