Đáp án:
$V_{AMNP}=\dfrac{a^3\sqrt6}{48}$
Lời giải:
Do $MN$ là đường trung bình $\Delta SAB$
$\Rightarrow MN\parallel CD(\parallel AB)$
Mà $SP\bot CD$
$\Rightarrow SP\bot MN$
$OA=\dfrac{AC}{2}=\dfrac{a^2+a^2}{2}=\dfrac{a}{\sqrt2}$
$SO^2=SA^2-OA^2=2a^2-(\dfrac{a}{\sqrt2})^2=\dfrac{\sqrt3}{2}$
$\Rightarrow SO=\dfrac{\sqrt6a}{2}$
$V_{AMNP}=\dfrac{1}{4}V_{ABSP}=\dfrac{1}{8}V_{S.ABCD}$
=$\dfrac{1}{8}.\dfrac{1}{3}SO.AB^2$
$=\dfrac{1}{24}\dfrac{\sqrt6a}{2}.a^2$
$=\dfrac{a^3\sqrt6}{48}$