\[\begin{array}{l}
Z = \left( {\frac{{x + 2}}{{\sqrt x + 1}} - \sqrt x } \right):\left( {\frac{{\sqrt x - 4}}{{1 - x}} - \frac{{\sqrt x }}{{\sqrt x + 1}}} \right)\,\,\,\left( {DK:\,\,x \ge 0;\,\,x \ne 1} \right)\\
= \frac{{x + 2 - x - \sqrt x }}{{\sqrt x + 1}}:\frac{{\sqrt x - 4 - \sqrt x \left( {1 - \sqrt x } \right)}}{{\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}}\\
= \frac{{2 - \sqrt x }}{{\sqrt x + 1}}:\frac{{\sqrt x - 4 - \sqrt x + x}}{{\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}}\\
= \frac{{2 - \sqrt x }}{{\sqrt x + 1}}:\frac{{x - 4}}{{\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}}\\
= \frac{{2 - \sqrt x }}{{\sqrt x + 1}}.\frac{{\left( {1 - \sqrt x } \right)\left( {1 + \sqrt x } \right)}}{{\left( {\sqrt x - 2} \right)\left( {\sqrt x + 2} \right)}}\\
= \frac{{1 - \sqrt x }}{{ - \left( {\sqrt x + 2} \right)}} = \frac{{\sqrt x - 1}}{{\sqrt x + 2}}.
\end{array}\]