\[\begin{array}{l}
y = \frac{2}{3}{x^3} - \frac{m}{2}{x^2} - {m^2}x + 2\\
\Rightarrow y' = 2{x^2} - mx - {m^2}\\
\Rightarrow y' = 0 \Leftrightarrow 2{x^2} - mx - {m^2} = 0\,\,\,\left( * \right)\\
\Rightarrow hs\,co\,\,2\,\,diem\,\,cuc\,\,tri \Leftrightarrow \left( * \right)\,\,co\,\,2\,\,nghiem\,\,phan\,\,biet\\
\Leftrightarrow \Delta > 0 \Leftrightarrow {m^2} + 8{m^2} > 0 \Leftrightarrow 9{m^2} > 0 \Leftrightarrow m \ne 0.\\
Ta\,\,co:\,\,\,y = \left( {\frac{1}{3}x - \frac{m}{{12}}} \right)y' - \frac{3}{4}x - \frac{{{m^3}}}{{12}} + 2\\
\Rightarrow d:\,\,\,y = - \frac{3}{4}x - \frac{{{m^3}}}{{12}} + 2\,\,\,la\,\,duong\,\,thang\,\,di\,\,qua\,\,hai\,\,diem\,\,cuc\,\,tri\,A,\,\,B\,cua\,\,hs.\\
O,\,\,A,\,\,B\,\,thang\,\,hang\\
\Rightarrow O \in d \Rightarrow - \frac{3}{4}.0 - \frac{{{m^3}}}{{12}} + 2\,\, = 0\\
\Leftrightarrow {m^3} = 24 \Leftrightarrow m = 2\sqrt[3]{3}\,\,\left( {tm} \right).
\end{array}\]