Cho hình thang ABCD (AB // CD) có hai đường chéo vuông góc với nhau (AC ⊥ BD)
a. Chứng minh tổng các bình phương của hai đáy bằng tổng các bình phương của hai cạnh bên (AB2 + BD2 = AD2 + BC2).
b. Chứng minh tổng các bình phương của hai đường chéo bằng bình phương của tổng hai đáy [AC2 + BD2 = (AB + CD)2].
c. Kẻ đường cao AH và đường trung bình Mn của hình thang ABCD. Biết BD = 9 cm, AC = 12 cm. Tính diện tích tứ giác AMHN.
A.SAMHN = 7,8 (cm2)
B.SAMHN = 37,8 (cm2)
C.SAMHN = 7,2 (cm2)
D.SAMHN = 10,5 (cm2)