Đáp án:
Giải thích các bước giải:
`3,`
`a, x(x - 120) + x - 120 = 0`
`⇔ x(x - 120) + (x - 120) = 0`
`⇔ (x - 120)(x + 1) = 0`
`⇒` $\left[\begin{matrix} x - 120 = 0\\ x + 1 = 0\end{matrix}\right.$ `⇒` $\left[\begin{matrix} x = 120\\ x = -1\end{matrix}\right.$
Vậy `x ∈ {-1; 120}`
`b, x(3x - 1) - 3x + 1 = 0`
`⇔ x(3x - 1) - (3x - 1) = 0`
`⇔ (3x - 1)(x - 1) = 0`
`⇒` $\left[\begin{matrix} 3x - 1= 0\\ x - 1 = 0\end{matrix}\right.$ `⇒` $\left[\begin{matrix} 3x = 1\\ x = 1 \end{matrix}\right.$ `⇒` $\left[\begin{matrix} x = \dfrac{1}{3}\\ x = 1\end{matrix}\right.$
Vậy `x ∈ {1/3 ; 1}`
`c, (5x - 3)^2 - (2x - 1)^2 = 0`
`⇔ [(5x - 3) + (2x - 1)][(5x - 3) - (2x - 1)] = 0`
`⇔ (5x - 3 + 2x - 1)(5x - 3 - 2x + 1) = 0`
`⇔ (7x - 4)(3x - 2) = 0`
`⇒` $\left[\begin{matrix} 7x-4= 0\\ 3x-2 = 0\end{matrix}\right.$ `⇒` $\left[\begin{matrix} 7x = 4\\ 3x = 2 \end{matrix}\right.$ `⇒` $\left[\begin{matrix} x = \dfrac{4}{7}\\ x = \dfrac{2}{3}\end{matrix}\right.$
Vậy `x = 4/7` hoặc `x = 2/3`
`d, x^2 (x + 2) - 18 -9x = 0`
`⇔ x^2 (x + 2) - 9(2 + x) = 0`
`⇔ (x + 2)(x^2 - 9) = 0`
`⇔ (x + 2)(x - 3)(x + 3) = 0`
`⇒` $\left[\begin{matrix} x+2= 0\\ x - 3 = 0\\ x + 3 = 0\end{matrix}\right.$ `⇒` $\left[\begin{matrix} x = -2\\ x = 3\\x = -3 \end{matrix}\right.$
Vậy `x ∈ {-3;-2;3}`