Đáp án:
Giải thích các bước giải:
$\begin{array}{l}
{a^4} + {b^4} \le \frac{{{a^6}}}{{{b^2}}} + \frac{{{b^6}}}{{{a^2}}}\\
\Leftrightarrow {a^4} + {b^4} \le \frac{{{a^8} + {b^8}}}{{{a^2}{b^2}}}\\
\Leftrightarrow {a^8} + {b^8} \ge {a^6}{b^2} + {b^6}{a^2}\\
\Leftrightarrow \left( {{a^8} - {a^6}{b^2}} \right) - \left( {{b^6}{a^2} - {b^8}} \right) \ge 0\\
\Leftrightarrow {a^6}\left( {{a^2} - {b^2}} \right) - {b^6}\left( {{a^2} - {b^2}} \right) \ge 0\\
\Leftrightarrow \left( {{a^2} - {b^2}} \right)\left( {{a^6} - {b^6}} \right) \ge 0\\
\Leftrightarrow \left( {{a^2} - {b^2}} \right)\left( {{a^2} - {b^2}} \right)\left( {{a^4} + {a^2}{b^2} + {b^4}} \right) \ge 0\\
\Leftrightarrow {\left( {{a^2} - {b^2}} \right)^2}\left( {{a^4} + {a^2}{b^2} + {b^4}} \right) \ge 0\left( {dung} \right)
\end{array}$
Vậy ta có điều phải chứng minh