Đáp án:
 
 
 
Giải thích các bước giải:
 
 \(\eqalign{
   & 1)\,\,y = \left( {2m - 5} \right)x + 3  \cr 
   & a)\,\,Ham\,\,so\,la\,ham\,\,bac\,\,nhat \Leftrightarrow 2m - 5 \ne 0 \Leftrightarrow m \ne {5 \over 2}  \cr 
   & b)\,\,Ham\,\,so\,\,DB \Leftrightarrow 2m - 5 > 0 \Leftrightarrow m > {5 \over 2}  \cr 
   & \,\,\,\,\,\,Ham\,\,so\,\,NB \Leftrightarrow 2m - 5 < 0 \Leftrightarrow m < {5 \over 2} \cr} \)
 \(\eqalign{
   & 2)\,\,Xet\,\,\Delta AHC:  \cr 
   & AH = AC.\sin {40^0} \approx 6,23\,\,\left( {cm} \right)  \cr 
   & Xet\,\,\Delta AH:  \cr 
   & BH = AH.\cot {50^0} \approx 5,4\,\,\left( {cm} \right) \cr} \)
 \(\eqalign{
   & 3)\,\,a)\,\,Ke\,\,AH \bot BC  \cr 
   & Xet\,\,{\Delta _v}AHC:\,\,AH = AC.\sin {50^0} \approx 26,81\,\,\left( {cm} \right)  \cr 
   & Xet\,{\Delta _v}AHB:\,\,\,  \cr 
   & \sin {60^0} = {{AH} \over {AB}} \Rightarrow AB = {{AH} \over {\sin {{60}^0}}} \approx 30,96\,\,\left( {cm} \right)  \cr 
   & Ap\,\,dung\,\,DL\,\,pytago\,\,trong\,\,{\Delta _v}ABC:  \cr 
   & BC = \sqrt {A{B^2} + A{C^2}}  \approx 46,72\,\,\left( {cm} \right)  \cr 
   & b)\,\,{S_{\Delta ABC}} = {1 \over 2}AH.BC \approx 626,39\,\,\left( {c{m^2}} \right) \cr} \)