Để chứng minh biểu thức luôn dương ta thường biến đổi về dạng \(A^2 + C\), trong đó \(C\) là số dương. Vì \(A^2 \le 0\) nên \(A^2 + C \ge C > 0.\)
Để chứng minh biểu thức luôn dương ta thường biến đổi về dạng \(-A^2 + C\), trong đó \(C\) là số âm. Vì \(-A^2 \le 0\) nên \(-A^2 + C < 0.\)
Ví dụ :
$\begin{array}{l}
A = {x^2} + x + 1 = {x^2} + 2.x.\frac{1}{2} + {\left( {\frac{1}{2}} \right)^2} + \frac{3}{4} = {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4}\\
Ta\,\,co:\,\,\,\,\,{\left( {x + \frac{1}{2}} \right)^2} \ge 0\,\,\,\,(\forall x)\,\,\,\,\\
\Rightarrow {\left( {x + \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4} > 0\\
\Rightarrow A\,\,luon\,\,duong\,
\end{array}$