\[\begin{array}{l}
a)\,\,\sqrt {{x^2} - 6x + 9} = x \Leftrightarrow \sqrt {{{\left( {x - 3} \right)}^2}} = x\\
\Leftrightarrow \left| {x - 3} \right| = x \Leftrightarrow \left[ \begin{array}{l}
x - 3 = x\\
x - 3 = - x
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
- 3 = 0\,\,\left( {vo\,\,ly} \right)\\
2x = 3
\end{array} \right. \Leftrightarrow x = \frac{3}{2}.\\
b)\,\,x + \sqrt {4{x^2} - 4x + 1} = 2 \Leftrightarrow \sqrt {{{\left( {2x - 1} \right)}^2}} = 2 - x\\
\Leftrightarrow \left| {2x - 1} \right| = 2 - x \Leftrightarrow \left[ \begin{array}{l}
2x - 1 = 2 - x\\
2x - 1 = x - 2
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
3x = 3\\
x = - 1
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 1\\
x = - 1
\end{array} \right..\\
c)\,\,\,\sqrt {x + 2\sqrt x + 1} - \sqrt {x - 2\sqrt x + 1} = 2\,\,\,\left( {DK:\,\,\,x \ge 0} \right)\\
\Leftrightarrow \sqrt {{{\left( {\sqrt x + 1} \right)}^2}} - \sqrt {{{\left( {\sqrt x + 1} \right)}^2}} = 1\\
\Leftrightarrow \left| {\sqrt x + 1} \right| - \left| {\sqrt x - 1} \right| = 1 \Leftrightarrow \sqrt x + 1 - \left| {\sqrt x - 1} \right| = 1\\
\Leftrightarrow \sqrt x = \left| {\sqrt x - 1} \right| \Leftrightarrow \left[ \begin{array}{l}
\sqrt x = \sqrt x - 1\\
\sqrt x = 1 - \sqrt x
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
0 = - 1\,\,\,\left( {VN} \right)\\
2\sqrt x = 1
\end{array} \right. \Leftrightarrow \sqrt x = \frac{1}{2} \Leftrightarrow x = \frac{1}{4}\,\,\,\left( {tm} \right).\\
d)\,\,\sqrt {x + 4\sqrt x + 4} + \sqrt {x - 4\sqrt x + 4} = 4\,\,\,\,\left( {DK:\,\,\,x \ge 0} \right)\\
\Leftrightarrow \sqrt {{{\left( {\sqrt x + 2} \right)}^2}} + \sqrt {{{\left( {\sqrt x - 2} \right)}^2}} = 4\\
\Leftrightarrow \left| {\sqrt x + 2} \right| + \left| {\sqrt x - 2} \right| = 4\\
\Leftrightarrow \sqrt x + 2 + \left| {\sqrt x - 2} \right| = 4\\
\Leftrightarrow \left| {\sqrt x - 2} \right| = 4 - \sqrt x - 2\\
\Leftrightarrow \left| {\sqrt x - 2} \right| = 2 - \sqrt x \\
\Leftrightarrow \left[ \begin{array}{l}
\sqrt x - 2 = 2 - \sqrt x \\
\sqrt x - 2 = \sqrt x - 2
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
2\sqrt x = 4\\
\,\,\forall x \ge 0
\end{array} \right.\\
\Leftrightarrow \sqrt x = 2 \Leftrightarrow x = 4.\\
Vay\,\,\,pt\,\,\,co\,\,nghiem\,\,voi\,\,moi\,\,x \ge 0.
\end{array}\]