Đáp án:
c) Hình vẽ
b) 1,1 km
Giải thích các bước giải:
20 giây đầu, vật cđ nhanh dần với \({a_1} = \dfrac{{v - {v_0}}}{t} = \dfrac{{20 - 10}}{{20}} = 0,5\left( {m/{s^2}} \right)\)
Chuyển động đều trong 30 giây với vận tốc bằng 20 (m/s)
Chuyển động chậm dần đi thêm 200 m, ta có: \({v^2} - v_0^2 = 2as \Rightarrow {a_2} = \dfrac{{{v^2} - v_0^2}}{{2s}} = \dfrac{{{0^2} - {{20}^2}}}{{2.200}} = - 1\left( {m/{s^2}} \right)\)
Hết thời gian là: \(t = \dfrac{{v - {v_0}}}{a} = \dfrac{{0 - 20}}{{ - 1}} = 20\left( s \right)\)
Đồ thị vận tốc thời gian
Quãng đường đi được trong 20 giây đầu: \({S_1} = \dfrac{{{v^2} - v_0^2}}{{2a}} = \dfrac{{{{20}^2} - {{10}^2}}}{{2.0,5}} = 300\left( m \right)\)
Quãng đường đi được trong 30 giây tiếp: \[{{\rm{S}}_2} = vt = 20.30 = 600\left( m \right)\]
Vậy \(S = {S_1} + {S_2} + {S_3} = 300 + 600 + 200 = 1100m = 1,1\left( {km} \right)\)