Đáp án đúng: A
Giải chi tiết:Điều kiện: \(2{\rm{x}} - 1 \ge 0 \Leftrightarrow x \ge \dfrac{1}{2}\)
Đặt \(t = \sqrt {2{\rm{x}} - 1} \left( {t \ge 0} \right) \Rightarrow x = \dfrac{{{t^2} + 1}}{2}(*)\).Thay (*) vào phương trình, ta được:
\(t + {\left( {\dfrac{{{t^2} + 1}}{2}} \right)^2} - 3\left( {\dfrac{{{t^2} + 1}}{2}} \right) + 1 = 0 \Leftrightarrow {t^4} - 4{t^2} + 4t - 1 = 0 \Leftrightarrow {\left( {t - 1} \right)^2}\left( {{t^2} + 2t - 1} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\t = \sqrt 2 - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {tm} \right)\\t = - \sqrt 2 - 1\,\,\,\,\,\,\,\,\,\left( {ktm} \right)\end{array} \right.\)
+) Với t = 1 \( \Leftrightarrow 1 = \sqrt {2{\rm{x}} - 1} \Leftrightarrow x = 1\)
+) Với \(t = \sqrt 2 - 1 \Leftrightarrow \sqrt 2 - 1 = \sqrt {2{\rm{x}} - 1} \Leftrightarrow x = 2 - \sqrt 2 \)
Vậy phương trình có 2 nghiệm.
Chọn A.