Giải thích các bước giải:
$% MathType!MTEF!2!1!+-
% feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn
% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqr1ngB
% PrgifHhDYfgasaacH8srps0lbbf9q8WrFfeuY-Hhbbf9v8qqaqFr0x
% c9pk0xbba9q8WqFfea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8fr
% Fve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakqaabeqaai
% aadgeacqGH9aqpcaGGOaWaaSaaaeaadaGcaaqaaiaadIhaaSqabaaa
% keaadaGcaaqaaiaadIhaaSqabaGccqGHsislcaaIXaaaaiabgkHiTm
% aalaaabaGaaGymaaqaaiaadIhacqGHsisldaGcaaqaaiaadIhaaSqa
% baaaaOGaaiykaiaacQdacaGGOaWaaSaaaeaacaaIXaaabaGaaGymai
% abgUcaRiaadIhaaaGaey4kaSYaaSaaaeaacaaIYaaabaGaamiEaiab
% gkHiTiaaigdaaaGaaiykaaqaaiaadgeacqGH9aqpcaqGBbWaaSaaae
% aadaGcaaqaaiaadIhaaSqabaaakeaadaGcaaqaaiaadIhaaSqabaGc
% cqGHsislcaaIXaaaaiabgkHiTmaalaaabaGaaGymaaqaamaakaaaba
% GaamiEaaWcbeaakiaac6cacaGGOaWaaOaaaeaacaWG4baaleqaaOGa
% eyOeI0IaaGymaiaacMcaaaGaaeyxaiaabQdacaqGGaGaae4wamaala
% aabaGaamiEaiabgkHiTiaaigdacqGHRaWkcaaIYaGaaiOlaiaacIca
% caWG4bGaey4kaSIaaGymaiaacMcaaeaacaGGOaGaaGymaiabgUcaRi
% aadIhacaGGPaGaaiOlaiaacIcacaWG4bGaeyOeI0IaaGymaiaacMca
% aaGaaeyxaaqaaiaabgeacaqG9aWaaSaaaeaacaWG4bGaeyOeI0IaaG
% ymaaqaamaakaaabaGaamiEaaWcbeaakiaac6cacaGGOaWaaOaaaeaa
% caWG4baaleqaaOGaeyOeI0IaaGymaiaacMcaaaGaaiOoamaalaaaba
% GaaG4maiaadIhacqGHRaWkcaaIXaaabaGaaiikaiaaigdacqGHRaWk
% caWG4bGaaiykaiaac6cacaGGOaGaamiEaiabgkHiTiaaigdacaGGPa
% aaaaqaaiaadgeacqGH9aqpdaWcaaqaaiaacIcadaGcaaqaaiaadIha
% aSqabaGccqGHsislcaaIXaGaaiykaiaac6cacaGGOaWaaOaaaeaaca
% WG4baaleqaaOGaey4kaSIaaGymaiaacMcaaeaadaGcaaqaaiaadIha
% aSqabaGccaGGUaGaaiikamaakaaabaGaamiEaaWcbeaakiabgkHiTi
% aaigdacaGGPaaaaiaac6cadaWcaaqaaiaacIcacaaIXaGaey4kaSIa
% amiEaiaacMcacaGGUaGaaiikaiaadIhacqGHsislcaaIXaGaaiykaa
% qaaiaaiodacaWG4bGaey4kaSIaaGymaaaaaeaacaWGbbGaeyypa0Za
% aSaaaeaadaGcaaqaaiaadIhaaSqabaGccqGHRaWkcaaIXaaabaWaaO
% aaaeaacaWG4baaleqaaaaakiaac6cadaWcaaqaaiaacIcacaaIXaGa
% ey4kaSIaamiEaiaacMcacaGGUaGaaiikaiaadIhacqGHsislcaaIXa
% GaaiykaaqaaiaaiodacaWG4bGaey4kaSIaaGymaaaaaaaa!B841!
\begin{array}{l}
A = (\frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{1}{{x - \sqrt x }}):(\frac{1}{{1 + x}} + \frac{2}{{x - 1}})\\
A = {\rm{[}}\frac{{\sqrt x }}{{\sqrt x - 1}} - \frac{1}{{\sqrt x .(\sqrt x - 1)}}{\rm{]: [}}\frac{{x - 1 + 2.(x + 1)}}{{(1 + x).(x - 1)}}{\rm{]}}\\
{\rm{A = }}\frac{{x - 1}}{{\sqrt x .(\sqrt x - 1)}}:\frac{{3x + 1}}{{(1 + x).(x - 1)}}\\
A = \frac{{(\sqrt x - 1).(\sqrt x + 1)}}{{\sqrt x .(\sqrt x - 1)}}.\frac{{(1 + x).(x - 1)}}{{3x + 1}}\\
A = \frac{{\sqrt x + 1}}{{\sqrt x }}.\frac{{(1 + x).(x - 1)}}{{3x + 1}}
\end{array}$