Cho hàm số \(y = {x^3} - 3{x^2} + 2x. \) Có tất cả bao nhiêu tiếp tuyến của đồ thị hàm số đi qua điểm \(A \left( { - \,1;0} \right) \)? A.1 B.2 C.3 D.4
Đáp án đúng: C Giải chi tiết:Gọi \(M\left( {m;y\left( m \right)} \right)\) thuộc \(\left( C \right) \Rightarrow \,\,y'\left( m \right) = 3{m^2} - 6m + 2\) và \(y\left( m \right) = {m^3} - 3{m^2} + 2m.\) Suy ra phương trình tiếp tuyến của \(\left( C \right)\) tại \(M\) là \(y - {m^3} + 3{m^2} - 2m = \left( {3{m^2} - 6m + 2} \right)\left( {x - m} \right).\) Vì tiếp tuyến \(d\) đi qua \(A\left( { - \,1;0} \right)\) suy ra \( - \,{m^3} + 3{m^2} - 2m = \left( {3{m^2} - 6m + 2} \right)\left( { - \,1 - m} \right) \Leftrightarrow {m^3} - 3m + 1 = 0.\) Giải phương trình, tìm được 3 nghiệm \(m\buildrel {} \over \longrightarrow \) Có tất cả 3 tiếp tuyến cần tìm. Chọn C.