Đáp án:
`x^4=3`
`<=>x^4-3=0`
`<=>(x^2-sqrt3)(x^2+sqrt3)=0`
Vì `x^2>=0`
`=>x^2+sqrt3>=sqrt3>0`
`<=>x^2-sqrt3=0`
`<=>(x-root{4}{3})(x+root{4}{3})=0`
`<=>` \(\left[ \begin{array}{l}x=\sqrt[4]{3}\\x=-\sqrt[4]{3}\end{array} \right.\)
Vậy `S={root{4}{3},-\root{4}{3})`
`(3x-5)^2-(2x+3)^2=(5x-2)(x-8)`
`<=>9x^2-30x+25-(4x^2-12x+9)=5x^2-40x-2x+16`
`<=>5x^2-18x+16=5x^2-42x+16`
`<=>24x=0`
`<=>x=0`
Vậy pt có nghiệm duy nhất `x=0`.